JOM 24136PC

Preliminary Communication

Die Struktur von Cp₂TiMe₂

Ulf Thewalt und Thomas Wöhrle

Sektion für Röntgen- und Elektronenbeugung der Universität Ulm, D-89069 Ulm (Deutschland)

(Eingegangen den 6. August 1993)

Abstract

The structure of dimethyltitanocene, Cp₂TiMe₂, has been determined: monoclinic, space group $P2_1/n$, lattice constants (at -100° C) a = 6.818(2), b = 11.571(2), c = 13.387(3) Å, $\beta = 92.36(2)^{\circ}$, and Z = 4. It is isostructural with Cp₂ZrMe₂ and Cp₂HfMe₂. The Ti-C(σ) bond lengths are 2.170(2) and 2.181(2) Å and the C(σ)-Ti-C(σ) angle is 91.3(1)°.

Key words: Titanium; Metallocene; Cyclopentadienyl; Crystal structure

Bis(cyclopentadienyl)dimethyltitan, Cp_2TiMe_2 , ist eine Schlüsselverbindung der titanorganischen Chemie [1]. Es ist verwunderlich, dass bisher an ihr noch keine Strukturbestimmung durchgeführt worden ist. Möglicherweise hängt dies mit dem bei Raumtemperatur zuweilen spontan und heftig ablaufenden autokatalytischen Zerfall zusammen, der bei Tebbe *et al.* [2] als "catastrophic" bezeichnet wird. Da andererseits die Strukturparameter von Cp_2TiMe_2 verfügbar sein sollten, haben wir nun eine Röntgenuntersuchung durchgeführt.

Die Darstellung der Verbindung erfolgte entsprechend den Angaben von Clauss und Bestian [3] aus Cp_2TiCl_2 und MeLi in Diethylether. Gut ausgebildete orangegelbe Kristalle wurden durch Umkristallisation aus Hexan bei -30° C erhalten. Die Röntgen-Messungen erfolgten bei -100° C. Die Strukturbestimmung [4] ergab die in den Abb. 1 und 2 gezeigte Molekülstruktur sowie die in Tabelle 1 aufgeführten Bindungsabstände und -winkel.

Sämtliche H-Atome liessen sich in einer ΔF -Synthese lokalisieren. Bei der Strukturverfeinerung wurden die Parameter aller H-Atome mitverfeinert. Die resultierenden C-H-Abstände der Methylgruppen (0.94

Correspondence to: Prof. Dr. U. Thewalt.

Abb. 1. ORTEP-Zeichnung eines Cp_2TiMe_2 -Moleküls. Der Übersichtlichkeit halber sind die Cp-H-Atome weggelassen.

bis 1.01 Å) und besonders die H-C-H-Winkel (97 bis 114°) sind nur als Näherungen der wahren Werte anzusehen. Die bezüglich ihrer Ti-C-Achsen dreh-

Abb. 2. Ansicht eines Cp_2TiMe_2 -Moleküls entlang der Winkelhalbierenden des C(11)-Ti(1)-C(12)-Winkels.

© 1994 - Elsevier Sequoia. All rights reserved

⁰⁰²²⁻³²⁸X/94/\$7.00 SSDI 0022-328X(93)24136-S

TABELLE 1. Ausgewählte Abstände (Å) Winkel (°) für Cp₂TiMe₂ ^a

2.371(2)		2.385(2)
2.395(2)	Ti(1)-C(7)	2.421(2)
2.414(2)	Ti(1)-C(8)	2.430(2)
2.407(2)	Ti(1) - C(9)	2.403(2)
2.392(2)	Ti(1)-C(10)	2.360(2)
2.181(2)	Ti(1)-Z(1)	2.075
2.170(2)	Ti(1) - Z(2)	2.082
	2.371(2) 2.395(2) 2.414(2) 2.407(2) 2.392(2) 2.181(2) 2.170(2)	$\begin{array}{c ccccc} 2.371(2) & Ti(1)-C(6) \\ 2.395(2) & Ti(1)-C(7) \\ 2.414(2) & Ti(1)-C(8) \\ 2.407(2) & Ti(1)-C(9) \\ 2.392(2) & Ti(1)-C(10) \\ 2.181(2) & Ti(1)-Z(1) \\ 2.170(2) & Ti(1)-Z(2) \end{array}$

C-C-Bindungslängen in den Cp-Ringen: 1.400(3) bis 1.411(2) Å C-H-Bindungslängen der Methyl-Gruppen: 0.94(1) bis 1.01(1) Å C-H-Bindungslängen der Cp-Gruppen: 0.80(1) bis 1.05(1) Å

Z(1)-Ti(1)-Z(2) 134.5 C(11)-Ti(1)-C(12) 91.3(1)

Ti-C(Me)-H-Winkel: 107.7(6) bis 116.6(6)°

H--C(Me)-H-Winkel: 97(1) bis 114(1)°

^a Mit Z(1) und Z(2) sind die Zentren der Cp-Ringe bezeichnet welche C(1) bzw. C(6) enthalten.

baren CH₃-Gruppen sind so orientiert, dass das Molekül näherungsweise C_{2v} -Symmetrie aufweist ("ekliptische" Anordnung); s. Abb. 2. Die beiden engsten Kontakte zwischen den Methylgruppen

TABELLE 2. Atomparameter von Cp₂TiMe₂

Atom	x	у	z
Ti(1)	0.0594(1)	0.2928(1)	-0.1433(1)
C(1)	0.2933(3)	0.2906(1)	-0.0072(1)
H(1)	0.372(1)	0.361(1)	0.005(1)
C(2)	0.3388(3)	0.1960(2)	-0.0681(2)
H(2)	0.438(1)	0.191(1)	-0.098(1)
C(3)	0.1824(3)	0.1171(1)	-0.0662(1)
H(3)	0.170(1)	0.039(1)	-0.105(1)
C(4)	0.0402(3)	0.1624(2)	- 0.0039(1)
H(4)	-0.089(1)	0.127(1)	0.009(1)
C(5)	0.1094(3)	0.2693(2)	0.0335(1)
H(5)	0.053(1)	0.319(1)	0.075(1)
C(6)	0.3145(3)	0.3476(2)	-0.2504(1)
H(6)	0.429(1)	0.311(1)	-0.241(1)
C(7)	0.1558(3)	0.3157(2)	-0.3142(1)
H(7)	0.158(1)	0.238(1)	-0.351(1)
C(8)	0.0026(3)	0.3948(2)	-0.3005(1)
H(8)	-0.118(1)	0.391(1)	-0.333(1)
C(9)	0.0668(3)	0.4755(1)	-0.2282(1)
H(9)	-0.008(1)	0.541(1)	-0.205(1)
C(10)	0.2599(3)	0.4453(2)	-0.1964(1)
H(10)	0.337(1)	0.481(1)	-0.146(1)
C(11)	-0.1892(2)	0.3850(2)	-0.0838(1)
H(11)	-0.267(1)	0.335(1)	-0.048(1)
H(12)	-0.157(1)	0.452(1)	-0.037(1)
H(13)	-0.276(1)	0.410(1)	-0.142(1)
C(12)	- 0.1348(2)	0.1667(2)	-0.2155(1)
H(14)	-0.217(1)	0.199(1)	-0.267(1)
H(15)	-0.073(1)	0.110(1)	-0.255(1)
H(16)	-0.206(1)	0.122(1)	-0.165(1)

 $(H(11)\cdots H(16) \text{ und } H(13)\cdots H(14)) \text{ sind mit } 3.0 \text{ Å}$ grösser, als dass die van der Waals-Abstossung eine nennenswerte Rolle spielt.

Die für Cp_2TiMe_2 gefundene Geometrie der TiMe₂-Einheit stimmt in engen Grenzen mit derjenigen vergleichbarer Ti-Verbindungen überein. Die folgende Zusammenstellung zeigt dies.

	TiC (Å)	C-Ti-C (°)
Cp ₂ TiMe ₂	2.170(2) und 2.181(2)	91.3(1)
[CpTiMe ₂] ₂ (fulvalen) [6]	2.158(6) bis 2.173(7)	91.5(2) und 91.7(3)
[indenyl] ₂ TiMe ₂ [7]	2.21	92.8
$Me_2C(C_5H_4)_2TiMe_2[8]$	2.162(2) und 2.166(2)	93.9(4)

In allen Fällen sind die Me-Ti-Me-Winkel mit etwa 90° ähnlich klein wie in anderen Cp_2TiX_2 -Verbindungen (beispielsweise 94.5° (Mittelwert) in Cp_2TiCl_2 [9]). Wie zu erwarten, sind in den zu Cp_2TiMe_2 isostrukturellen Molekülen Cp_2ZrMe_2 und Cp_2HfMe_2 [10] die Metall-Ligand-Abstände etwa 0.10 Å länger als in Cp_2TiMe_2 . Ein Vergleich der Gitterkonstanten (und der Atomparameter) ergibt, dass die drei Verbindungen isomorph kristallisieren:

	Raum- gruppe	a (Å)	b (Å)	c (Å)	β (°)	
Cp ₂ TiMe ₂	$P2_1/n$	6.818(2)	11.571(2)	13.387(3)	92.36(2)	
$Cp_2 ZrMe_2$	$P2_1/n$	6.953(3)	11.902(5)	13.839(5)	91.95(3)	
Cp_2HfMe_2	$P2_1/n$	6.965(4)	11.854(5)	13.786(6)	92.02(3)	

Dank

Wir danken dem Fonds der chemischen Industrie für die Förderung der vorliegenden Arbeit.

Literatur

- 1 Zusammenstellung der entsprechenden Literaturangaben in: Gmelin Handbook of Inorganic Chemistry, Organotitanium Compounds, Part 3, Springer-Verlag, Berlin, 1984, S. 212-222.
- 2 F.N. Tebbe, G.W. Parshall und G.S. Reddy, J. Am. Chem. Soc., 100 (1978) 3611.
- 3 K. Clauss und H. Bestian, Liebigs Ann. Chem., 654 (1962) 8.
- 4 Röntgenmessungen: Philips-PW1100-Gerät mit Graphitmonochromator bei -100° C, Mo-K α -Strahlung ($\lambda = 0.71069$ Å), Raumgruppe $P2_1/n$, Gitterkonstanten a = 6.818(2), b = 11.571(2), c = 13.387(3) Å, $\beta = 92.36(2)^{\circ}$; Z = 4; $D_{ber} = 1.310$ g cm⁻³; Kristall in Glasröhrchen; $\theta/2\theta$ -Messmodus, $2\theta_{max} = 50^{\circ}$; 1830 unabhängige Reflexe. Im folgenden wurden die 1763 Reflexe mit $F_0 > 3\sigma(F_0)$ benutzt. Schweratommethode; alle H-

Atome in ΔF -Synthese lokalisiert. Ihre Koordinaten wurden mitverfeinert. $R = 0,029 R_w(F) = 0,041$. Maximale Restelektronendichte = 0.27 eÅ⁻³; Rechnungen mit dem ULM-Programmsystem [5]. Atomparameter siehe Tabelle 2. Weitere Einzelheiten zur Strukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Karlsruhe, unter Angabe der Hinterlegungsnummer CSD-57506, der Autoren und des Zeitschriftenzitats angefordert werden.

5 R. Brüggemann, T. Debaerdemaeker, B. Müller, G. Schmid und U. Thewalt, ULM-Programmsystem, Referate der 1. Jahrestagung

der Deutschen Gesellschaft für Kristallographie, 9.–12. Juni, 1992, Mainz, S. 33.

- 6 T. Wöhrle und U. Thewalt, J. Organomet. Chem., 456 (1993) C21.
- 7 J.L. Atwood, W.E. Hunter, D.C. Hrncir, E. Samuel, H. Alt und M.D. Rausch, *Inorg. Chem.*, 14 (1975) 1757.
- 8 I.E. Nifant'ev, A.V. Churakov, I.F. Urazowski, Sh.G. Mkoyan und L.O. Atovmyan, J. Organomet. Chem., 435 (1992) 37.
- 9 A. Clearfield, D.K. Warner, C.H. Saldarriaga-Molina, R. Ropal und I. Bernal, *Can. J. Chem.*, 53 (1975) 1622.
- 10 W.E. Hunter, D.C. Hrncir, R. Van Bynum, R.A. Penttila und J.L. Atwood, Organometallics, 2 (1983) 750.